Continuous optimization problems and a polynomial hierarchy of real functions
نویسندگان
چکیده
منابع مشابه
The ring of real-continuous functions on a topoframe
A topoframe, denoted by $L_{ tau}$, is a pair $(L, tau)$ consisting of a frame $L$ and a subframe $ tau $ all of whose elements are complementary elements in $L$. In this paper, we define and study the notions of a $tau $-real-continuous function on a frame $L$ and the set of real continuous functions $mathcal{R}L_tau $ as an $f$-ring. We show that $mathcal{R}L_{ tau}$ is actually a generali...
متن کاملPointfree topology version of image of real-valued continuous functions
Let $ { mathcal{R}} L$ be the ring of real-valued continuous functions on a frame $L$ as the pointfree version of $C(X)$, the ring of all real-valued continuous functions on a topological space $X$. Since $C_c(X)$ is the largest subring of $C(X)$ whose elements have countable image, this motivates us to present the pointfree version of $C_c(X).$The main aim of this paper is to present t...
متن کاملa contrastive study of rhetorical functions of citation in iranian and international elt scopus journals
writing an academic article requires the researchers to provide support for their works by learning how to cite the works of others. various studies regarding the analysis of citation in m.a theses have been done, while little work has been done on comparison of citations among elt scopus journal articles, and so the dearth of research in this area demands for further investigation into citatio...
Inverting Onto Functions and Polynomial Hierarchy
The class TFNP, defined by Megiddo and Papadimitriou, consists of multivalued functions with values that are polynomially verifiable and guaranteed to exist. Do we have evidence that such functions are hard, for example, if TFNP is computable in polynomial-time does this imply the polynomial-time hierarchy collapses? By computing a multivalued function in deterministic polynomial-time we mean o...
متن کاملReal Addition and the Polynomial Hierarchy
** The k-th alternation level of the theory of real numbers under addition and order is log-complete for the k-th level of the polynomial hierarchy. *Submitted to Information Processing Letters **Research supported in part by US Air Force Grant AFOSR 80-0196 ***
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Complexity
سال: 1985
ISSN: 0885-064X
DOI: 10.1016/0885-064x(85)90012-3